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General remarks 

Statistical distribution of the twins, carried out on 
about thirty crystals from the same batch, has shown 
that twinning I is by far the most frequent of the three 
types; as is seen from X-ray intensities, crystals twinned 
according to this law have approximately equal vol- 
umes of the two components, thus suggesting the oc- 
currence of multiple twinning; they moreover do not, 
in general, show either of the other two types of twin- 
ning: in the few cases where an individual twinned ac- 
cording to II or III is present, its volume is remarkably 
small. Twinning III is the least frequent and it gener- 
ally occurs in those crystals which are also twinned 
according to II. A typical example of twinning II and 
III in the same crystal, where the volumes of the in- 
dividuals happen to be approximately equal, is shown 
in Fig. 8. 

At the boundary layers the molecules are packed in 
such a way that CH bonds are directed through oxygen 

and nitrogen atoms of adjacent molecules; this feature 
is present in the crystal structures of this compound 
and of the other investigated biisoxasole isomers (Can- 
nas & Marongiu, 1967; Biagini, Cannas & Marongiu, 
1969); from the values of intermolecular contacts at 
the boundary layers, which are very close to those 
found in the mentioned crystal structures, it could be 
inferred that the energy at the twin boundaries should 
not be much different from that of the regular structure. 

This work was supported by the Italian Consiglio 
Nazionale delle Ricerche. 
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Because of the dielectric properties of most crystals in the X-ray frequency region, polarization phen- 
omena such as birefringence and optical activity are not found with X-rays in simple transmission. It 
can however be deduced from the dynamical theory that such effects occur in crystal diffraction. An 
experiment is described which proves that under certain conditions all four branches of the dispersion 
surface can be excited by linearly polarized incident waves. This means that elliptically polarized X-rays 
can also be produced by crystal diffraction. Therefore in principle all polarization experiments that can 
be performed with visible light are also possible with X-rays. 

1. Introduction 

Polarization phenomena which are observed with vis- 
ible light (such as birefringence and optical activity) 
are generally not found for X-rays. This is because of 
the dielectric properties of most materials in the X-ray 
frequency region. Little attention has however been 
paid to the fact that polarization phenomena similar 
to those observed with visible light occur in crystal dif- 
fraction. This can be demonstrated by considering the 
influence of polarization on dynamical diffraction ef- 
fects. One such effect which is sensitive to the state of 
polarization of crystal waves is the occurrence of Pen- 
dell6sung fringes in the diffraction patterns from 
wedge-shaped crystals, which was first observed by 
Kato & Lang (1959). An explanation of Pendell0sung 

* Present address: Institute of Applied Physics, Technische 
Hochschule, Vienna, Austria. 

fringes in terms of spherical wave theory was given by 
Kato (1961). Furthermore the effect of X-ray polariza- 
tion on these fringes was investigated by two groups 
of authors: by Hattori, Kuriyama & Kato (1965) and 
by Hart & Lang (1965). They have shown that an un- 
polarized incident wave causes a fading of the fringes 
which can be explained as a superposition of two sets 
of fringes corresponding to waves with their polariza- 
tion vectors parallel and perpendicular to the plane 
of incidence respectively. Besides that, Hart & Lang 
showed that there is only one set of fringes (and natu- 
rally no fading) when the incident wave is polarized 
perpendicular to the plane of incidence. 

Still one important case remains to be investigated. 
This is the case of a linearly polarized incident beam 
with an electric vector making an angle different from 
0 or 90 ° with the plane of incidence. From the theoret- 
ical results of Moli~re (1939) one can deduce that the 
diffraction of such a wave will give rise to elliptically 
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polarized waves and to a fading of Pendell6sung 
fringes. 

This has not previously been experimentally shown. 
The experiments required are rather difficult to per- 
form since the intensity after diffraction by two crys- 
tals (one serving as a polarizer) which do not have the 
same plane of incidence, is extremely low. 

In this paper we present experimental results which 
prove that an incident plane-polarized wave may after 
diffraction by a good crystal give elliptically polarized 
wavefields, i.e. that 'polarization mixing' does exist in 
the case of crystal diffraction. The term 'polarization 
mixing' was introduced by Ashkin & Kuriyama (1966) 
to denote a process where the final and the initial states 
of polarization are different. 

In the first part, we recall Moli&e's results. Then, 
the variation of the phase and amplitude of elliptically 
polarized wavefields with the depth in the crystal and 
their interference is discussed. In the second part, the 
results of our experiment and some conclusions are 
given. 

2. Theory 

(a) Polarization phenomena 
The influence of the dielectric properties on the 

polarization of crystal waves in the case of diffraction 
has been very carefully studied and described in a paper 
by Moli~re (1939). His results will be briefly reviewed 
here. 

According to Moli&e, the fundamental equations 
of the dynamical theory have the following form: 

1 - ~ Dm= ~ (C,,,qD~)±Km. (1) 
q 

The Cmq generally have tensor character. They consist 
of the Fourier coefficients of the scalar dielectric sus- 
ceptibility Xm-q and a resonance term Area, which can 
be split into a scattering and an absorption term: 

4-  A scat  4-  ,d abs  
Cmq : ,)( m - q - - -  ~ ratl - -  ""mq • 

(2) 

Absorption is taken into account by the complex 
A.~bs These Area terms only become important near an m q  • 

absorption edge. They have tensor character and thus 
determine the tensor properties of C,,~. For X-ray 
frequencies far from an absorption edge, Amq is neg- 
ligibly small and the C~q are equal to the Fourier co- 
efficients of the dielectric susceptibility Z which depend 
only on the difference of the indices m -  q. 

Following Moli6re, we introduce N different coor- 
dinate systems (one for each beam) for a 'mixed rep- 
resentation' of the tensor Cm~. The ruth coordinate sys- 
tem has its z axis parallel to the wave vector Kin. The 
amplitudes Dm are perpendicular to the corresponding 
Kin. Taking the index -l-Kin on the right hand side of 
equation (1) into account, we obtain a two-dimensional 
reduced tensor Cmq, which contains no z components. 
With the introduction of the excitation errors em as 
usual: 

a system of two-dimensional matrix equations is ob- 
tained 

N 

{C,,q- 2e,,d,,,q}Dq = 0 (4) 
q 

where fi,,q is Kronecker's delta. This can alternatively 
be written as a 2N-dimensional matrix equation 

( [C]-  2[e])D = 0 (5) 

where [e] contains the excitation errors and the two- 
dimensional unitary matrices Ez: 

[ e o E  2 0 0 . . . .  \ 

I 0 ~,mE2 0 . . . .  
[~1= \ 0 0 eoE2 . . . .  ] (6) 

and N is the number of beams. 
We now assume a two-beam case where only one 

reflexion m is excited. The matrix [C] has then the fol- 
lowing form: 

/ ~ x o x o  ¢-xoYo t"XoXm t 'Xorm \ 
i ".-" O0 "..'00 "--'Ore "..'Ore 
~[ f"YoXo [ "  YoYo t"YOXm / "  YO ym 
1 ~ "  O0 "-" O0 ~ O m  "-'Ore | 

[ C ]  = | [ . . ,XmX 0 [..,xmy 0 C, XmXm (.~XrnYml 
~ " - "  m0 "-~ m0 v m m  v m m  ] 
~k CYt~xo [ '~YmYO ('TYrnXm C YmYra/ 

~'--" m O  v n l m  ~ m m  I " 

(7) 

C 

La 

k~2 k,~2 

Fig. 1. Dispersion surface and wave vectors in the two-beam 
case. 
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Equation (5) can be regarded as an eigenvalue problem. 
The 2N dimensional eigenvectors D contain the com- 
ponents of the electric vectors of the crystal waves 

~,, D~) .  ( Dgo, D~o, D m , 
The polarization of the crystal waves depends on 

the form of the eigenvectors D and on the properties 
of the matrix [C]. In the most general case, it is a non- 
hermitian matrix and the system of crystal waves is 
elliptically polarized with no definite relation between 
the axes and the eccentricities of the ellipses. If we 
assume that the crystal has a centre of symmetry and 
neglect absorption, the matrix [C] is real and symmetric 
and the system of crystal waves is linearly polarized 
with mutually perpendicular planes of polarization. 
This is the case generally assumed in ordinary dynami- 
cal theory of diffraction. 

In the-two beam case and with the coordinate sys- 
tem mentioned above, the matrix [C] has the following- 
form: 

[C] = Z0 0 X,,i cos 20 
0 Xo 0 (8) 

\~  Z,,COS20 0 2'0 

where 0 is the Bragg angle. 
Equation (5) then gives the well known dispersion 

surface for the two-beam case with four branches; two 
for which the electric vector lies in the plane of in- 
cidence (zc polarization) and two for which it is per- 
pendicular to this plane (a polarization). As mentioned 
already, in principle this does not hold near an absorp- 
tion edge but can be used as a good approximation. 
In a crystal with a centre of symmetry the A s e a t  --m~ are 
purely real and the z abs purely imaginary. For frequen- • *mq 

cies below the frequency of an absorption edge A abs *raq 

becomes small and can be neglected. As was further 
shown by Moli~re and Laue (1960), all , 4 s e a t  become *=tnq 

real and equal to each other if the X-ray wavelength 

A~ N A2 A 

A4 B 1 

A5 M 
i 

A; A; A'3 

Fig. 2. Superposition of the amplitudes of two elliptically 
polarized waves with the same axes but different sense of 
turning. Full line: electric field vector of the left hand polar- 
ized wave. Dotted line: electric field vector of the right 
hand polarized wave. At the time to the amplitudes of both 
waves are OAo. At tl they are OA1 and OAa', giving a 
resultant OBI. 

is sufficiently larger than the Bohr radius of the crys- 
z scat depends on ( m - q )  tal atoms. Since in this case --m~ 

only, we can write 

Cmq=Zm_q-~- ZlXm_ q (8a) 

where AZm_ a represents a scalar correction term. If 
[C] is a real, symmetrical tensor its eigenvectors rep- 
resent crystal waves which are linearly polarized per- 
pendicular to each other. The fundamental equations 
assume the form originally developed by Laue. This 
means that, because of the dielectric properties of the 
crystals, elliptically or circularly polarized crystal waves 
are not to be expected in practical cases. 

The results of the calculations of the scattering prob- 
ability Ca~, from one state of polarization into an- 
other by Hojo, Ohtsuki & Yanagawa (1966) are in 
principle equivalent to this. The value of C~.z, was cal- 
culated in terms of the wave functions which are used 
in the usual photo-electric excitation calculations. The 
wave function used for the ground state is the product 
of hydrogen-like eigenfunctions of electrons. These 
wave functions have proved to give good results in 
calculations of absorption coefficients for X-rays. 
Since it can be shown that Cz), is zero as long as these 
wave functions are used, it was concluded by Hojo 
et al. that, to a very good approximation, waves with 
a polarization different from the initial one are not 
produced in the crystal. That means that the produc- 
tion of elliptically polarized X-rays is not possible ow- 
ing to the dielectric properties of the crystals. It is how- 
ever possible to obtain elliptically polarized X-rays by 
crystal diffraction as will be shown in the following. 

(b) Polarization o f  the crystal waves in the two-beam case 
For the two-beam case the dispersion surface is 

given by 
Det {[C]-2[e]} =0  (9) 

with [C] from equation (7) or (8). This gives the well 
known four branch dispersion surface which lies in 
real k space if absorption is neglected (Fig. 1). The 
excitation points for waves with their electric vectors 
perpendicular and parallel to the plane of incidence 
lie on the a and n branches respectively. This has the 
consequence that the wave-vector difference between 
waves of type 1 and type 2 and therefore also the 
PendellSsung fringe distance depends on the state of 
polarization. If natural light (i.e. light where all states 
of polarization are equally present) is diffracted this 
will result in the superposition of two fringe systems 
with different spacing. This causes a periodic fading 
of the PendellSsung fringes which was first observed 
and explained by Hart & Lang (1965). An explanation 
in terms of spherical wave theory was given by Hattori 
et al. The amplitude of the fringes is modulated by the 
beat of the two patterns according to the factor 

1 1 
cos Qr ( A~ A , , ) t }  (10) 



where t is the crystal thickness and A,  and A~ are the 
fringe distances for cr and rc polarizations respectively. 
For  the exact Bragg condition and the symmetrical 
Laue case, the wave-vector difference is given by 

k 1 
(k°t-k°2)~r"~ COS0 Clz,,[- A,~.,~ (11) 

with the polarization factor C which is C =  1 for a 
polarization and C = cos 20 for the zc polarization. The 
quanti ty ;O, is the Fourier  coefficient of  the suscep- 
tibility which is directly related to the structure factor. 

I f  the incident wave is already linearly polarized we 
must  consider a possible interference between all crys- 

tal waves which are now coherent. Let us assume that 
the electric vector is inclined at 45 ° with respect to the 
plane of  incidence. I f  we consider only the diffracted 
waves we have four component  plane waves with the 
wave vectors k~l, k~x, ko2, k~2. Unlike in the case of  
natural  light these waves with different states of  po- 
larization are not independent. 

We shall suppose that the incident wave is a plane 
wave which is nearly the experimental case. For  sim- 
plicity, we shall further assume that the deviation from 
the Bragg angle A0 is zero and that the reflecting 
planes are normal  to the entrance surface of  the crys- 
tal. I f  we consider the waves with index (I) only, we 

Z ~ C2) 

~ 1)*C2) 

Zc1 ) 
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Fig. 3. Variation of the state of polarization with the depth z in the crystal. Right: wavefield (1) - Left: wavefield (2) - Centre: 
the resulting state of polarization where wavefields (1) and (2) overlap. 
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W 

cottimated 
beam 

wedge ~~¢ounter 
'~movement 

polarizer 

Fig. 4. Experimental arrangement. 



P. S K A L I C K Y  A N D  C. M A L G R A N G E  505 

find that the crystal diffraction introduces a phase dif- 
ference of 

( 1  1 )  
2n(k~l -k~0.  r = n  A ,  ~ . t (12) 

between the a and n components for a crystal of a 
thickness t. This means that the wavefield belonging 
to branch (1) of the dispersion surface will generally 
be elliptically polarized. The amplitude ratio is given by 

a lit 

Eg _ a~ exp {2ni(k~l-k~l). t } =  --d~ exp (iO) (13) 
E~ a~ 

where a~, and an are the amplitudes of the component 
plane waves. We shall now neglect absorption which 
gives 

a~ _ a~ - c o s  20.  (13a) 
a~ a~ 

A wave is of right-hand polarization for 6>0.  The 
waves belonging to the (1) branches of the dispersion 
surface are therefore of right-hand polarization while 
the branch (2) waves form a left-handed polarized 
wave. This can immediately be seen from Fig. 1 where 

62 "~- 27~(k~2 - -  k~2). t < 0 (14) 

and we can notice that 61 = -62.  This remains true even 
for AO#O. 

We can now introduce a polarization periodicity g2. 
It is given by 

1 1 
12 - ½(1 - Icos  201) A, (15) 

The phase difference between the a and n components 
can thus be expressed as 

exp (i6) =exp (2nit/f2). (16) 

This means that the same state of polarization is 
repeated with a depth periodicity of £~. Since [6t[ = 
1621, the waves belonging to the (1) and (2) branches 
of the dispersion surface always have the same state 
of polarization. If 6 = n / 2 + n n  (n, integer) the wave 
is circularly polarized. Circular polarization occurs for 
a thickness of g-2/4+nf2/2 or 6=n/2. A crystal with 
such a thickness is therefore a quarter-wave plate for 
both wave fields (1) and (2) and could in principle be 
used to investigate elliptically polarized X-rays. 

If the wave fields (1) and (2) overlap, they will inter- 
fere and give fringes at the exit surface. The contrast 
of the fringes depends on the state of polarization. It 
is strongest where both wave fields have linear polariza- 
tion, and a fading is expected where both wave fields 
have circular polarization. It can easily be shown that 
an interference between two elliptically polarized waves 
with the same amplitude and eccentricity but with op- 
posite sense of turning give a linearly polarized wave. 
The amplitude and orientation of this linearly polarized 
resultant wave depends on the phase difference be- 
tween the two ellipticaUy polarized waves. If at a 

given time the two waves are both represented by OAo 

(Fig. 2), the resultant electric vector is 20Ao cos cot. 
The value of the amplitude can therefore vary from 

20M to 20N depending on the phase difference and 
thus on the thickness of the crystal. The period of this 

oscillation from 20M to 20N is equal to one half of 
the Pendell6sung fringe distance. The greater the ec- 
centricity of the ellipse, the greater is the difference 

between ON and OM and the greater the contrast of 
the fringes. Where the ellipse degenerates into a straight 
line, the contrast of the fringes is a maximum. In that 
limiting case the plane of polarization does not turn. 
On the other hand, the contrast is a minimum when the 
ellipse becomes a circle (6 = n/2 +nn). In this case the 
resultant amplitude is constant and the only the plane 
of polarization rotates. So a non-absorbing diffracting 
crystal with a thickness corresponding to a fading re- 
gion rotates the plane of polarization of the incident 
radiation. The fringe region corresponds to a thick- 
ness for which both wave fields (1) and (2) are linearly 
polarized. 

If the crystal is thick enough and the incident plane 
wave does not fulfil the Bragg condition exactly the 
two wave fields (1) and (2) will not overlap. They 
propagate in different directions which are given by 
the normals to the dispersion surface. At the exit sur- 
face the wave fields split into primary and diffracted 
waves which can thus be linearly, elliptically or cir- 
cularly polarized depending on the crystal thickness. 
These results are summarized in Table 1 and illustrated 
in Fig. 3. 

Table 1. Crystal thickness and polarization 
Thickness fi = Ik ° - k'q Polarization Fading 

0 0 linear fringes 
~2/4 n/2 circular fading 
O/2 n linear fringes 

3f2/4 3n/2 circular fading 

So far we have neglected absorption. Since the ab- 
sorption is different for all four branches of the dis- 
persion surface in the two-beam case, it affects the 
amplitude ratios and equation (13a) is no longer satis- 
fied. The state of polarization of the crystal waves 
remains the same if we still call a wave circularly 
polarized for 6=n /2  even if IExl ¢ ]Eyl. It follows that 
the fading of the Pendelltisung fringes is an indicator 
of the excitation of waves with their tie-points on all 
four branches of the dispersion surface. If the incident 
radiation is linearly polarized but neither in the n nor 
in the a direction the fading is thus an indicator of the 
existence of elliptically polarized cystal waves. 

3. Experimental 

As mentioned already, Hart & Lang were the first to 
give an explanation for the difference in Pendell/Ssung 
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fringe patterns obtained with unpolarized and with 
polarized radiation. They showed that the fading of 
the fringes observed with unpolarized incident radia- 
tion disappeared when ~r-polarized radiation was used. 
The experiment which is described here is however 
different from the one performed by Hart & Lang. 
As explained in § 2, we expect a periodic fading of the 
Pendell6sung fringes not only for unpolarized but also 
for linearly polarized incident radiation if the electric 
vector is inclined to the plane of incidence. In this case, 
the fading cannot be explained by a superposition of 
two independent fringe patterns. An experiment of 
this kind was performed using a two-crystal arrange- 
ment similar to that of Cole, Chambers & Wood 
(1961) (Fig. 4). The Pendell6sung fringes obtained by 
diffraction of linearly polarized X-rays by a wedge- 
shaped crystal were observed. The first crystal is a 
thick silicon crystal which is used as a Borrmann-type 
polarizer. With Mo Kc~ radiation and a 220 refiexion, 
the intensity ratio of radiation with cr and 7r polariza- 
tions is approximately 1:I0 for the type (1) waves. 
The type (2) waves are strongly absorbed. Both the 
transmitted and the diffracted waves are therefore 
nearly completely polarized after the first crystal with 
their electric vectors parallel to the diffracting planes. 
The second crystal is wedge-shaped and mounted on a 
traversing mechanism. The intensity diffracted by the 
second crystal is recorded with a counter. 

By a rotation of the first crystal around the centre 
line of the anomalously transmitted beam the E vector 

can be made to take up any angle with respect to the 
plane of the drawing and thus to the plane of in- 
cidence at the second crystal. Since the transmitted 
beam has the same state of polarization as the dif- 
fracted beam, it is much more convenient to use this 
primary beam because it does not sensibly change its 
direction when the polarizer is turned. 

If ~0 is the polarizer angle, we will call ~0=0 the 
'parallel' arrangement. For this position of the polarizer 
the rocking curves of the second crystal are very sharp 
double-crystal rocking curves. Because the polarizer is 
thick, the Borrmann triangle is large and the slit before 
the second crystal will only receive radiation of very 
small angular divergence (Authier, 1961). This means 
that we have essentially a pseudo plane-wave case for 
the second crystal. When the polarizer is set at another 
angle (especially at ~0=90 ° or ~0=270 °) the rocking 
curves of the second crystal have the appearance of 
broad, triangular peaks. The intensity is of course 
drastically decreased. The average intensity in the ex- 
periment represented by the upper curve in Fig. 5 is 
approximately 600 counts/hour. In the 'parallel' ar- 
rangement all the radiation diffracted by the first crys- 
tal is also diffracted by the second one. In any other 
position, ~0¢0 °, X-rays incident on the first crystal 
with a deviation AO from the Bragg angle have an 
angle of incidence at the second crystal equal to 
08+ AO'. The deviation AO' is a function of AO, ~o, and 
of the angle c~ of the X-rays with the plane of incidence 
of the second crystal, i.e. the plane of Fig. 4. As the 

. =  0 

~lntensity 
qarbJtrary unit. 

m m  

I I ~ I j 
4O 6~0 640 5.~0 51)0 4.50 Crystal transtatlon 

Fig. 5. Intensity versus position of the crystal for linearly polarized incident radiation. Lowm curve: polarization perpendicular 
to the plane of incidence. Upper curve: polarization inclined at 45 ° with respect to the plane of incidence. Note that the fading 
of the fringes in the upper curve is not due to unpolarized incident radiation. 
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m m  

b Fringe position 

2 nd Fringe region . / ~ 1 ¢ ~ . /  

:/4/ 

1 st Fringe r ~  ' 

7 / "  / 
Fig. 6. Fringe position v e r s u s  fringe order. + tp = 0°; points lie 

on a straight line. O~p=45°; Points lie on a straight line only 
if half integers are assigned to the fringes in the second 
fringe region. 

vertical divergence of the incident beam is about 10 -2 
X-rays diffracted by the second crystal have different 
angles ct and therefore different AO'. The rocking curve 
is thus greatly broadened and the intensity measured 
after the second crystal at the maximum of the rocking 
curve can be considered as an integrated 'nearly plane- 
wave' intensity. Some preliminary experiments showed 
that the fringes for (0 # 0  ° were well visible when the 
second crystal was moved on its translation movement. 

Fig. 5 shows the results of measurements of the in- 
tensity diffracted by the second crystal as a function 
of its thickness for both (0=45 ° and (0=0 ° . The fading 
of the fringes and the shift of the fringe position are 
clearly visible. Fig. 6 illustrates the variation of fringe 
position as a function of the fringe order. As shown 
by Hattori et al. (1965), a nice alignment of the plotted 
points is obtained by assigning half integers to the 
fringes of the fringe regions of even order and integers 
to the fringes in the regions of odd order. 

From these fringe patterns for different polarizer 
positions the following facts can therefore be deduced. 

(i) In the (0 =0  ° position of the polarizer no fading 
effect is observed because only waves belonging to two 
branches of the dispersion surface are excited. 

(ii) A fading of the fringes occurs both for unpolar- 

ized radiation and for the (0 = 45 ° position of the polar- 
izer. This proves that in both cases all four branches 
of the dispersion surface are excited. As explained in 
§ 2, the crystal waves will be elliptically polarized for 
linearly polarized incident radiation. If the crystal is 
thick and absorption is weak, the type (1) and (2) 
waves can be separated and circularly polarized X-rays 
can thus be obtained. 

In conclusion we can recall that polarization mixing 
has been analysed theoretically by Moli6re (1939) and 
by Hojo, Ohtsuki & Yanagawa (1966) for the case of 
pure refraction, i.e. in a one-beam case. Moli~re showed 
that in some cases a polarization mixing could exist 
but he expected the effect to be small. 

Hojo et al. studied the problem quantum mechan- 
ically and concluded that polarization mixing does not 
exist as long as hydrogen-like atomic wave functions 
are a good approximation. These results show that in 
any case polarization mixing is expected to be very 
weak in simple transmission. Our experiment shows 
however that in the two-beam case polarization mixing 
does exist. In principle therefore all polarization ex- 
periments which are possible with visible light can be 
performed with X-rays. Since however diffracting crys- 
tals must be used as polarizers and compensators it is 
in practice difficult to obtain sufficient intensity to 
find evidence for the proposed effects. 

The authors wish to thank Professor Authier for his 
interest in this work and for many stimulating discus- 
sions. One of us (PS) also wants to acknowledge finan- 
cial support from the French government and the 
Austrian Forschungsrat. 
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